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Abstract—In this paper we describe a simple but effective method 
for the evaluation of Fractional- order derivatives. This approach is 
based on the fact that for wide class of Functions, which appear in 
real physical and engineering application, Riemann-Liouville 
Derivatives and Grunwald-Letnikov Fractional Derivatives are 
equivalent. This allows us to use an approximation arising from the 
Grunwald-Letnikov Fractional Derivatives are equivalent definition 
for the evaluation of Fractional derivatives of both types. We also 
Formulate the principal of short memory which reduces the amount 
of computation. 
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1. INTRODUCTION: FRACTIONAL CALCULUS  

Fractional Calculus is a term used for the theory of derivatives 
and integrals of arbitrary order, which generalize the notion of 
integer order differentiation and n-fold integration. The idea 
behind Fractional calculus is to generalize the definition of 
differentiation and integration with order 푛 ∈ ℕ to order 푠 ∈
ℝ. The first discussion [9] on Fractional Calculus began in 
1695 in a letter to L’Hopital by Leibniz in which he discussed 
about calculus of arbitrary order. Fractional Calculus is three 
centuries old. Few names that laid the foundation of Fractional 
Calculus are Abel, Liouville, Riemann, Euler, Caputo etc. 
Fractional Calculus has recently been applied in various areas 
of engineering, science, finance, applied mathematics and bio 
engineering.[10] . It has earlier been observed that derivatives 
of non-integer order are useful for describing the properties of 
various real materials like polymer, rocks etc. Also the 
fractional order models were found more logical to talk an 
discuss about than the integer-order models. In this paper we 
are focusing on Fractional Derivatives. Different people gave 
different definitions for the Fractional Derivative. Few 
definitions are : 
1.1 Grunwald-Letnikov Fractional Derivatives: Let us 
consider a continuous function f(t), We define 

퐷 푓(푡) = lim
→

ℎ (−1)  
푝
푟 푓(푡 − 푟ℎ)   

퐷 푓(푡) =  lim →
∆ ( ) 

 , ∆ 푓(푡) =

ℎ ∑ (−1)
[ ]

 푓(푡 − 푗ℎ)  (1.1) 

Where [x] means the integer part of x. The above formula has 
been obtained under the assumption that the derivatives f ( )(t) 
(k=1, 2, 3,. . . ,m+1) are continuous in the closed interval [a,t] 
and that m is the integer number satisfying m > p-1. 

1.2. Riemann-Liouville Derivatives: 

퐷 푓(푡) = (
푑
푑푡)

 (푡 − 휏) 푓(휏)푑휏, (푚 ≤ 푝 < 푚 + 1) 

Closely related to fractional –order differentiation is 
fractional-order integration: 

퐷 푓(푡) =  1
Γ(훼)

푓(휏)
(푡 − 휏)( ) 푑휏    훼 > 0 

It is worth noted that 

퐷 ( 퐷 푓(푡)) =  푓(푡) 훼 > 0 

Which generalizes an analogous property of integer 
derivatives and integrals. 

1.3. Caputo’s Fractional Derivatives 

The definition of the fractional differentiation of the Riemann-   

Liouville Derivatives type played an important role in the 
development of the theory of fractional derivatives and for its 
applications in pure mathematics. However, the demands of 
modern technology require a certain revision of well 
established mathematical approach .The Caputo approach 
provides an interpolation between an integer order derivatives: 

퐷 푓(푥) = ( )∫
( )( )

( )(∝ )  , 푛 − 1 <∝< 푛 ,∝
∈ ℝ ,푛 ∈ ℕ 

1.4 Euler’s Fractional Derivatives: 

푑∝

푑푡∝ 푡 = 퐷 푡 =
Γ(훽 + 1)

Γ(훽 + 1− 훼) 푡 ,훼 ∈ ℝ 

http://www.krishisanskriti.org/Publication.html
mailto:dsingh@ggn.amity.edu


Numerical Evaluation of Fractional Derivatives 141 
 

 

Journal of Basic and Applied Engineering Research 
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 5, Issue 2; January-March, 2018 

1.5. Sequential Fractional Derivatives 

The main idea of differentiation and integration of arbitrary 
order is the generalization of iterated integration and 
differentiation. In all these approaches we replace the integer 
valued parameter n of a operator denoted by  with a non 
integer parameter p. 

However, we can assume that the n-th order differentiation is 
simply a series of n first order differentiation .So, considering 
more general expressions 

       퐷 = 퐷 퐷 퐷 … … … .퐷  

Where 훼 = 훼 + 훼 + 훼 + ⋯… … .훼 ,which we will also 
call the sequential fractional derivatives. 

Indeed, Riemann-Liouville Derivatives can be written as 

퐷 푓(푡) = … … . 퐷 ( )푓(푡)   (n-1≤ 푝 < 푛) 

While the Caputo fractional differential operator can be 
written as 

퐷 푓(푥) =  퐷 ( ) … … .  f(t)(n-1< 푝 ≤ 푛 − 1 ) 

2. PROPERTIES OF FRACTIONAL DERIVATIVES:  

Fractional Derivatives satisfy almost all the properties that 
hold for[5] ordinary derivatives. We are aware of the general 
properties of the derivative operator 퐷  ,푛 ∈ ℕ. Below 
mentioned are the properties of Fractional Derivative that can 
be easily verified: 

 퐷∝[푓(푡)푔(푡)] = ∑ ∝∞ 퐷∝ [푓(푡)]퐷 [푔(푡)]  

where ∝ = Γ(∝ )
Γ( )Γ(∝ )

. 

 퐷∝[푓(푡)퐶] = ∑ ∝∞ 퐷∝ [푓(푡)]퐷 [퐶] = 퐷∝[푓(푡)]퐶. 
 

 퐷∝[ℎ(푡) + 푔(푡)] = ∑ ∝∞ 퐷∝ [푡 ]퐷 [ℎ(푡) +
푔(푡)] = 퐷∝[ℎ(푡)]+퐷∝[푔(푡)] . 

 
 퐷∝[ℎ(푎푡)] = 푎∝퐷∝[ℎ(푥)] ,푥 = 푎푡 . 

 
 퐷∝[푡 ] = (−1)∝ Γ( ∝)

Γ( ) 푡 ( ∝). 
 

 퐷 [푓(푡)] = 퐷 [퐷 (푓(푡))] = 퐷 [퐷 (푓(푡))]. 
 

퐷 푡 = ( )
( ) 푡 = , 

where 훼 ∈ 퐷∝[푓(푡)푔(푡)] = ∑ ∝ 퐷∝ [푓(푡)]퐷 [푔(푡)], 

where ∝ = (∝ )
( ) (∝ )

. 

 퐷∝[푓(푡)퐶] = ∑ ∝∞ 퐷∝ [푓(푡)]퐷 [퐶]  = 퐷∝[푓(푡)]퐶 
Where 퐶 is an arbitrary constant. 

 퐷∝[ℎ(푡) + 푔(푡)] = ∑ ∝∞ 퐷∝ [푡 ]퐷 [ℎ(푡) + 푔(푡)] 
= 퐷∝[ℎ(푡)]+퐷∝[푔(푡)] . 

 퐷∝[ℎ(푎푡)] = 푎∝퐷∝[ℎ(푥)] under the scaling 푥 = 푎푡. 
 퐷∝[푡 ] = (−1)∝ Γ( ∝)

Γ( ) 푡 ( ∝) for a given 푚 ∈ ℝ. 

 퐷 [푓(푡)] = 퐷 [퐷 (푓(푡))] = 퐷 [퐷 (푓(푡))] under the 
composition of 퐷  and 퐷 on 푓(푡). 

 퐷 푡 = Γ( )
Γ(β ) 푡 = , where 훽 ∈ ℝ 

corresponding to a negative order derivative. 

2.1. Mittag-Leffler Function: 

The Exponential function play a important role in the theory 
of integer order differential equation its one parameter 
generalization is denoted by[4] 

푬휶(풛) =∑ 풛풌

( )풌 ퟎ  

was introduced by G.M Mittag Leffler [5, 6, 7] and also 
studied by A.William[8, 9] . 

2.2 Laplace Transforms of Fractional Derivatives: 

The Laplace transform of a function f(t) is defined as 

F(s) = L(f(t))=∫ 푒 f(t) dt 

Laplace Transform of Fractional derivatives of order p> 0 in 
terms of Riemann-Liouville Derivatives pth 

L{ 퐷 푓(푡); 푠} =푠 F(s)−∑ 푠 [ 퐷 푓(푡)]  
 (n-1≤ 푝 < 푛) 

3. APPROXIMATION OF FRACTIONAL 
DERIVATIVES 

We use the following approximation, arising from Grunwald-
Letnikov definition 

퐷 푓(푡) ≈ ∆ 푓(푡)      (3.1) 

Another type of approximation can be obtained from the 
Riemann-Liouville definition by n-times integration by parts 
and subsequent approximation of integral containing 푓 (휏) . 

3.1 The short Memory Principle 

For 푡 ≥ 푎 the number of addends in the fractional derivative 
approximation (3.1) become enormously. However it follows 
drom(i.i) that for a large t the role of the history of the 
behavior of the function f(t) near the lower terminal can be 
neglected under certain assumption. Those observations leads 
us to the formulation of the short memory principle, which 
means taking in to account the behavior of f(t) only in the 
interval [t-L,t],where L is the memory length 

퐷 푓(푡) ≈ 퐷 푓(푡)     (푡 > 푎 + 퐿)               (3.1.1) 

which means the fractional derivative with lower limit a is 
approximated by fractional derivatives with moving lower 
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limit t-L.Due to this approximation, the number of addends in 
approximation(3.1) can not be greater than . 

If푓(푡) ≤ 푀 for 푎 ≤ 푡 ≤ 푏,we easily establishthe following 
estimate for the error caused due to short memory Principle: 

∆(푡) =| 퐷 푓(푡)− 퐷 푓(푡) | ≤
|⎾( )|

       푎 + 퐿 ≤ 푡 ≤ 푏        
(3.1.2) 

The above inequality can be used to find the memory length L 
providing the required accuracy휖: 

∆(푡) ≤ 휖,   푎 + 퐿 ≤ 푡 ≤ 푏  , if 퐿 ≥
|⎾( )|

   ( 3.1.3) 

3.2. Order of Approximation  

Let us recall some basic facts on the approximation of integer-
order derivatives. 

It is well known that backward finite differences can be used 
for approximating integer order derivatives. For example, for a 
fixed t and a small step h we can approximate the first order 
derivative by two point backward difference: 

푦 (푡) ≈ 푦 (푡) = ( ) ( ) (3.2.1) 

Writing y(t-h) in the form of the Taylor’s series, we have 

푦 (푡) =
푦(푡)− 푦(푡 − ℎ)

ℎ = 푦 (푡)−
푦 (푡)

2 ℎ +⋯ . .
= 푦 (푡) + 푂(ℎ), 

Which means that   y(t) − 푦 (푡) = 푂(ℎ); (3.2.2) 

In other words, the two-point backward difference formula 
gives the first order approximation of푦 (푡). 

In this case, we can write the approximation of the α-th 
derivative as 

0퐷 푓(푡) = ℎ ∑ (−1)  푓(푡 − 푗ℎ) (3.2.3) 

= ℎ ∑  푓(푡 − 푗ℎ).    (3.2.4) 

To introduce the idea of the considerations which will follow, 
let us take the simplest function 

푓 (푡) ≡ 1 (푡 ≥ 0). we already know that its exact α-th 
derivative is 0퐷 푓 (푡) =

∝

( ). 

On the other hand, the approximation (3.1.4) gives the 
approximate value 

0퐷 푓 (푡) = ℎ ∑  

Using the known summation formula for the binomial 
coefficients 

∑ =  (3.2.5) 

Let us now consider 푓 (푡) = 푡  , m = 1, 2, 3…….. .  

In this case the exact α-th derivative is 

0퐷 푓 (푡) = ( ) 
( )  푡  

And the approximation of the exact derivative becomes 

0퐷 푓 (푡) = 푡 푛 ∑ 1− ,         (3.2.6) 

Or, after expanding the binomial, 

0퐷 푓 (푡) = 푡 ∑  (−1) 푛 ∑ (푗)  
(3.2.7) 

The sum 

S=∑ (푗) = ∑ 휎( ) ( )
( ) ( ) ( ).   (3.2.8) 

On substituting 

0퐷 푓 (푡) = ( )
∑  (−1) ∑ 휎( )  ( )

( ) ( )  .(3.2.9) 

3.3 Computation of coefficients 
For implementing the fractional difference method of 
computation of fractional derivative, it is necessary to 
compute the coefficient 
푤(∝) = (−1) ∝     
where  k=1,2,3…………….. 
Where ∝ is the order of fractional order derivatives. 
For fixed value of ∝, we have 
푤(∝) = (−1)  ; 푤(∝) = (1− )푤(∝)     k=1,2,3………… 

However in some problem 푤(∝) can be expressed in Fourier 
Transform: 
푤(∝) = ∫ 푓 (t)푒 dt ,        (푡) = (1− 푒 )  

4. CONCLUSION 

We have described the method for the numarical evaluation of 
Fractional- order derivatives. This approach is based on the 
fact that for wide class of Functions, which appear in real 
physical and engineering application, Riemann-Liouville 
Derivatives and Grunwald-Letnikov Fractional Derivatives are 
equivalent. This allows us to use an approximation arising 
from the Grunwald-Letnikov Fractional Derivatives are 
equivalent definition for the evaluation of Fractional 
derivatives of both types. We also Formulate the principal of 
short memory which reduces the amount of computation and 
describe method of computing coefficients 푤(∝) = (−1) ∝  
for calculating fractional derivative to implement difference 
method. 
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